Comparison of noninvasive fluorescent and bioluminescent small animal optical imaging.
نویسندگان
چکیده
Optical imaging is a modality that is cost-effective, rapid, easy to use, and can be readily applied to studying disease processes and biology in vivo. For this study, we used a green fluorescent protein (GFP)- and luciferase-expressing mouse tumor model to compare and contrast the quantitative and qualitative capabilities of a fluorescent reporter gene (GFP) and a bioluminescent reporter gene (luciferase). We describe the relationship between tumor volume, tumor mass, and bioluminescent/fluorescent intensity for both GFP and luciferase. Bioluminescent luciferase imaging was shown to be more sensitive than fluorescent GFP imaging. Luciferase-expressing tumors were detected as early as 1 day after tumor cell inoculation, whereas GFP-expressing tumors were not detected until 7 days later. Both bioluminescent and fluorescent intensity correlated significantly and linearly with tumor volume and tumor weight, as measured by caliper. Compared to bioluminescent imaging, fluorescent imaging does not require the injection of a substrate and may be appropriate for applications where sensitivity is not as critical. Knowing the relative strengths of each imaging modality will be important in guiding the decision to use fluorescence or bioluminescence.
منابع مشابه
Comparison of human optimized bacterial luciferase, firefly luciferase, and green fluorescent protein for continuous imaging of cell culture and animal models.
Bioluminescent and fluorescent reporter systems have enabled the rapid and continued growth of the optical imaging field over the last two decades. Of particular interest has been noninvasive signal detection from mammalian tissues under both cell culture and whole animal settings. Here we report on the advantages and limitations of imaging using a recently introduced bacterial luciferase (lux)...
متن کاملMonitoring Bacterial Burden, Inflammation and Bone Damage Longitudinally Using Optical and μCT Imaging in an Orthopaedic Implant Infection in Mice
BACKGROUND Recent advances in non-invasive optical, radiographic and μCT imaging provide an opportunity to monitor biological processes longitudinally in an anatomical context. One particularly relevant application for combining these modalities is to study orthopaedic implant infections. These infections are characterized by the formation of persistent bacterial biofilms on the implanted mater...
متن کاملFluorophore-NanoLuc BRET Reporters Enable Sensitive In Vivo Optical Imaging and Flow Cytometry for Monitoring Tumorigenesis.
Fluorescent proteins are widely used to study molecular and cellular events, yet this traditionally relies on delivery of excitation light, which can trigger autofluorescence, photoxicity, and photobleaching, impairing their use in vivo. Accordingly, chemiluminescent light sources such as those generated by luciferases have emerged, as they do not require excitation light. However, current luci...
متن کاملCombined in vivo optical and µCT imaging to monitor infection, inflammation, and bone anatomy in an orthopaedic implant infection in mice.
Multimodality imaging has emerged as a common technological approach used in both preclinical and clinical research. Advanced techniques that combine in vivo optical and μCT imaging allow the visualization of biological phenomena in an anatomical context. These imaging modalities may be especially useful to study conditions that impact bone. In particular, orthopaedic implant infections are an ...
متن کاملNear-Infrared Fluorescent Nanoprobes for in Vivo Optical Imaging
Near-infrared (NIR) fluorescent probes offer advantages of high photon penetration, reduced light scattering and minimal autofluorescence from living tissues, rendering them valuable for noninvasive mapping of molecular events, assessment of therapeutic efficacy, and monitoring of disease progression in animal models. This review provides an overview of the recent development of the design and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BioTechniques
دوره 35 5 شماره
صفحات -
تاریخ انتشار 2003